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Abstract : Mbbnosubstituted I.3-dioxolan-4-one 1 are stemxelectively convened into selectively protected 23- 
crytIm- 1,2,3-triols 3 via Tebbe methylenation, followed by hydmLwation-oxid. 

5-Monosubstituted 1,3-dioxolan-4-ones are well established organic compounds which have mainly been 

pmparedr from a-hydroxy acids (route 1). In sharp contrast, the Snonosubstitution of dioxolanones derived 

from glycolic acid2 (route 2) has hardly been explored3 and has been recently developed by us4. 
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The purpose of this letter is to report on the following two-step stereoselective transformations of 

dioxolanones 1: 

oxidation 

f 

R 0 
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Tebbe methylenation6 of 1 is a high-yielding process (see Table 1) for the synthesis of 4-methylene-1,3- 

dioxolanes 27. The hydroboration*+g of 2 with BH3.THF or BH3.MezS proceeds regiospecifrcally by virtue of 

the highly polar nature of the substrate. A salient and welcome feature of this scenario is the high level of 

diasmreoselectionru - expected on the basis of steric grounds - attached to this hydrobomion when performed 

with simple BH3 reagents (see Table 1) lt. Another intrinsic characteristic is that the resulting 2.3~erythro- 

1,2,3-trio1 is selectively protected on position 2 and 3, making target 3 directly available for further 
transformations. 
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Table 1 

entry yield (%I%) 3 method yield (a) ds3b 

of2 (maiorisomer) OfS (9&j 

d 

e 

96 

96 

69 

A 57 

A 71 

83 

>g8 

OH 

A 68 ~98 

B 79” 

B 86e 

96 

>98 

Yield refers to chromatographically and spectroscopically homogeneous compounds. General experimental procedures, 

metfiyhation : to a solution of 1 (1 eq, 1 mmol) in anhydrous toiuenc (3 ml), THF (0.5 ml) and pyridin (0.5 ml), stirred at -78°C 

under argon atmosphere, T&be reagent was added (1.2-1.5 cq.. ca 0.5 M in tolucne. 2.4-3 ml) aad the mixture was allowed to warm 
up at rt. After tk control, the solution was cooled to -3O“C. diluted with ether and sodium hydroxide 20% aqueous solution (3 ml) 
was added under argon atmosphere. After IO min at rt the solution was filtered through a cclite pad, eluted with ether, and then 

evapcaatcd under reduced pressure. 2 was obtained as a colorless syrup after flash chromatography on silica gel, eluting with hexane 
/ethyl acetate. Hydroborution-oxidation : to a 0.5 M solution of 2 (1 mmo9 in anhydrous THF, BH3.THF (method A> or BHg .Me# 

(method B) (1M solution in THF, 1 mmol) was added at O’T. under argon atmosphere. After OSh at rt, a sodium hydroxide 5% 
aqueous solution (0.5 ml) and an hydrogen peroxide 30% aqueous solution (0.5 ml) were added at OC The mixture WBS stirred for 
0.5h, then diluted with water. THF was evaporated and the product was extracted with dichloromethane. The organic layer was 
washed with brine, dried on anhydrous sodium sulfate, filtered, and evaporated. 3 was purikd by flash ch romamgmphy on silica gel. 

a. Isolated yield of cryho-3, ds > 98% (RMN 250 MHz); b. 9% of a 60 : 40 mixture of 5.6O-cyclohexylidene-2.3-O-(3’- 
pentylidene)-3-O-pivaaloyl_Dallitol and 5.6-O~yclohexylidene-2.3-O-(3’-pentylidene)-3-O-pivaloyl-Daluitol was also isolated; 
c. Crude yield; d. This isolated yield calculated from le includes 38% of methy1-2,3,4-tri-0-benzyl-7,8-0-(3’-pe.ntylidene)+-L-ri6o- 
D-glucu-I ,5-pyrano-nonosidc 3e and 48% of melhyl-2,3,4-tri-O-benzyl-7.8~_(3’-pentylidene)6-O-trimethylsilyl-&- 
1,5-pyrano-nonoside. On storage the latter was spontaneously bansformed into 3e. 
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Entries d and e (Table 1) materialize a short synthetic pathway to polyhydroxylated molecules or higher 

sugars. We may consider the dioxolanone 4 as a masked surrogate of the synthon S : 

Table 2. Selected physical data for compounds 3. 

3 [al, lH-NMR 

3a 

3b 

3c 

36 

3e 

+sofi 
c 2.73 

CH2C12 

-16+ 

c 0.1 

cm3 

+17 

c 0.7 

ml3 

+34 

C 1.43 

cm3 

+18 

Cl.3 

CHC13 

25oMHz 

C6D6 

4ooMHz 

C6D6 

2soMHz 

C6D6 

4mMHz 

=3 

4ooMHz 

=3 

1.28. 1.50 (2s. 6H. CH3h 2.90 (s, 1H. OH). 3.00 (dd, lH, Hgb), 3.20 (dd, lH, J3,,,3b 

10.9 Hz, H3a). 4.20 (ddd. 1H. J23b 4.2, Jz,~~ 7.8 Hz, HZ). 4.58 (d. IH. J1.2 6.9 Hz, 

Ht). 

3.76 (m. 2H. Hla. Hlb), 3.82 (dd, IH, H3). 3.91 @Id. 2H. J5%5b 15.2, J4.5b 1.1 Hz, 

H5a, H5b). 4.07 (dd. 1H. J2,ia 5.4, J23 6.5 Hz, I$), 4.10 (ddd, 1H. J4,5a 7.9, Jq,5b 1 .l, 

J3,4 4.0 Hz, H4)- 

1.21.1.23, 1.27. 1.34, 1.53. 1.59 (6s, 18H. CH3). 2.64 (s. 1H. OH), 3.79-4.0 (m, 6H), 

4.04 (dt. lH), 4.19 (t, 1H). 4.40 (dd. 1H). 

3.80 (ddd. 1H. JoH.~ 8. Jh.tb 11.5. Jlr2 5 Hz, HI.). 3.88 (ddd, 1H. Jmlb4.5. Jlb.2 8 

Hz, Hlbh 3.93 (dd. 1H. J2,3 6. J3.4 10 Hz, Hg), 3.97 (t, IH. J5,6b, J&a 8 Hz, HSb), 

4.04 (a 1H. J5.h 65 Hz. Hd. 4.12 (da. IH, J4.5 3 Hz, H& 4.38 (ddd, lH, H&4.39 

(ddd. 1H. H5). 

3.39 (%3H, CH30h 3.50 (dd. lH, J1.2 3.5. J23 9.7 Hz. Hz). 3.63 (dd, 1H. J3.4 9, J4.5 

10 Hz. h)v 3.70 (d. 2H, J&g 6-v 2Hg). 3.87 (d, lH, J6,7 10. J5.6 0 Hz, HB), 3.91 (d, 

1H. H5). 4.04 (t. lH, H3), 4.21 (dd, lH, J7.8 6 Hz, H7), 4.31 (q. 1H. Hs), 4.59 (d, IH, 

HI). 

8 L~CO-3a (ds 95%) : [aID +24 (c 0.36, CH$Iz). lit15[a],, +19 (c 2.9, CHflz). + litI6 (D-i-) [aID +24 (c 1.8, CHCl3). 
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